Incorporating Health Into Transportation Decisions

Urban Design 4 Health & the National Public Health Assessment Model (N-PHAM)

December 15, 2022

Urban Design 4 Health – <u>www.ud4h.com</u>

Lawrence Frank, PhD

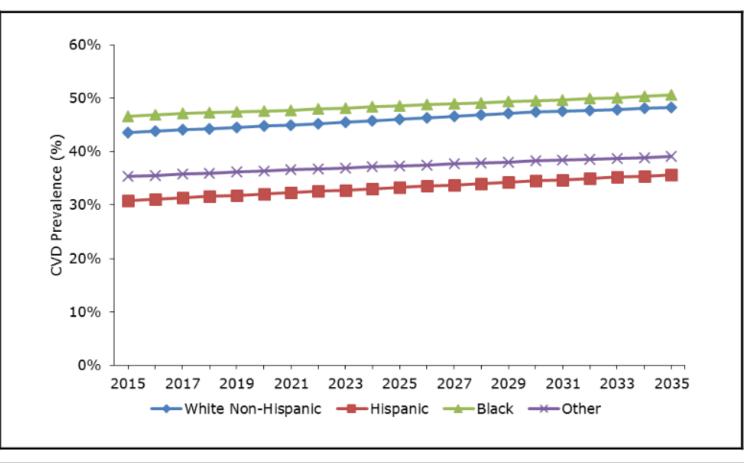
Professor - University of California San Diego

President - Urban Design 4 Health

Call to Action to Promote Walking

2020 Federal Government Initiative to support Environmental Justice

- Goal of 40% of overall benefits of certain federal investments to go to disadvantaged communities
- Communities that are underserved and overburdened by the impacts of pollution and climate change
- U.S. Surgeon General's *Call to Action* to Promote Walking & Walkable Communities
 - Initiated the HHS Step it Up! Campaign
 - Urges city officials, developers and communities to:
 - Build walkable communities
 - Invest in infrastructure to promote walking for healthy living


JUSTICE40

Growth in Cardiovascular Disease Across Ethnicity

Khavjou, O., et al., Projections of Cardiovascular Disease Prevalence and Costs: 2015–2035. 2016 American Heart Association.

Chronic Disease Burden

Condition	Prevalence (US)	Health Care Costs, Annual (\$Billions)
Obese	33.9	\$173**
Cardiovascular Disease	42.6 (estimated)	\$555*
Diabetes	11.1	\$327**

* 2015, ** 2021

Khavjou, O., et al., Projections of Cardiovascular Disease Prevalence and Costs: 2015–2035. 2016 American Heart Association. RTI Project Number 0214680.003.001.001. https://www.heart.org/-/media/Files/About-Us/Policy-Research/Fact-Sheets/Public-Health-Advocacy-and-Research/Projections-of-CVD-Prevalence-and-Costs-2015-2035.pdf

Re-Appropriating Road Space: Taking Back the Streets

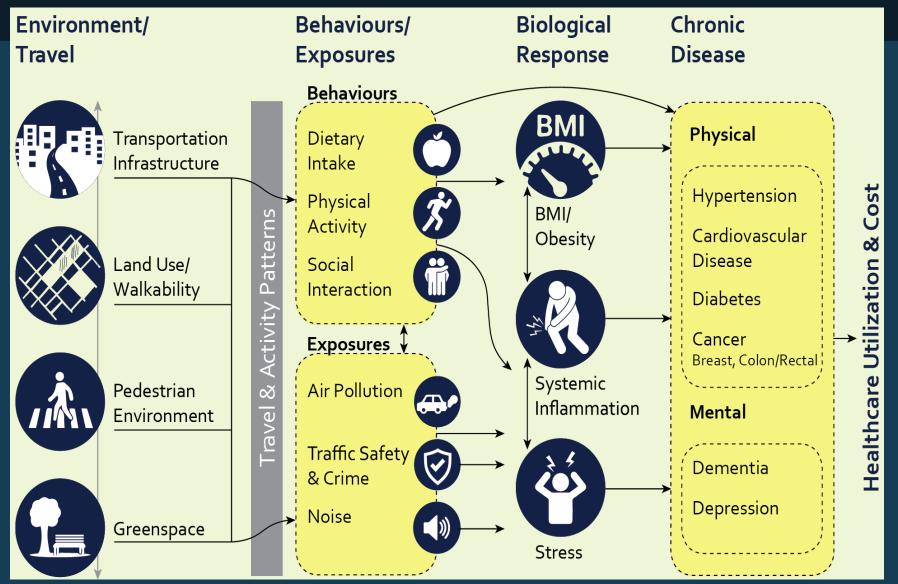
Normal Street Promenade Source: Fox 5 San Diego

Proposed Gaslamp Promenade Source: SanDiegoDowntownNews.com

2021 Infrastructure Investment and Jobs Act – \$2+ Trillion

REAUTHORIZATION OF TRANSPORTATION SPENDING PLUS INCREASES FOR EQUITY-DRIVEN AND CLEAN ENERGY TRANSPORTATION SOLUTIONS

"Repair and rebuild our roads and bridges with a focus on climate change mitigation, resilience, **equity**, and **safety** for all users."


"Improve transportation options for millions of Americans and reduce greenhouse emissions through the **largest investment in public transit in U.S. history**."

- Repair/maintenance of what is already in place
- Multi-modal accessibility
- Clean energy
- Bicycle and Pedestrian Safety
- Ensure investment in underserved and vulnerable communities

Quantifying the Pathways

Frank, L. D., Iroz-Elardo, N., MacLeod, K. E., Hong, A. The pathways from built environment to health: Connecting behavior and exposure-based impacts. 2019. Journal of Transport and Health.

BUILT ENVIRONMENT ELEMENTS & SCALE

Transportation Accessibility

MACRO

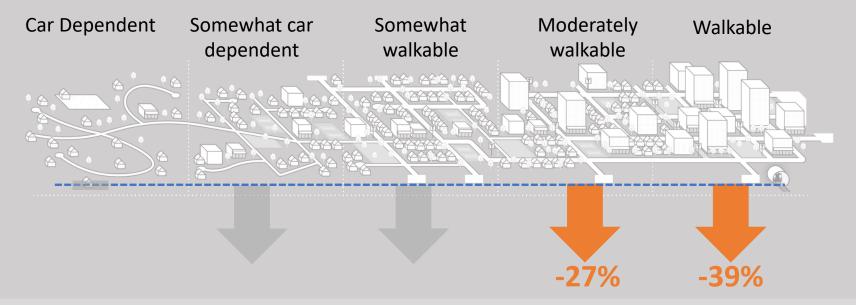
Complete Communities

MICRO


Pedestrian Environment

- Sidewalk, Road Buffering
- Pedestrian Crossings
- Trees, Lighting, Seating

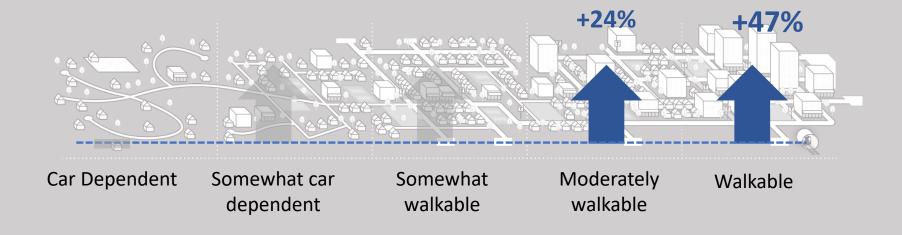
Place Types by Walkability



Walkability and Diabetes

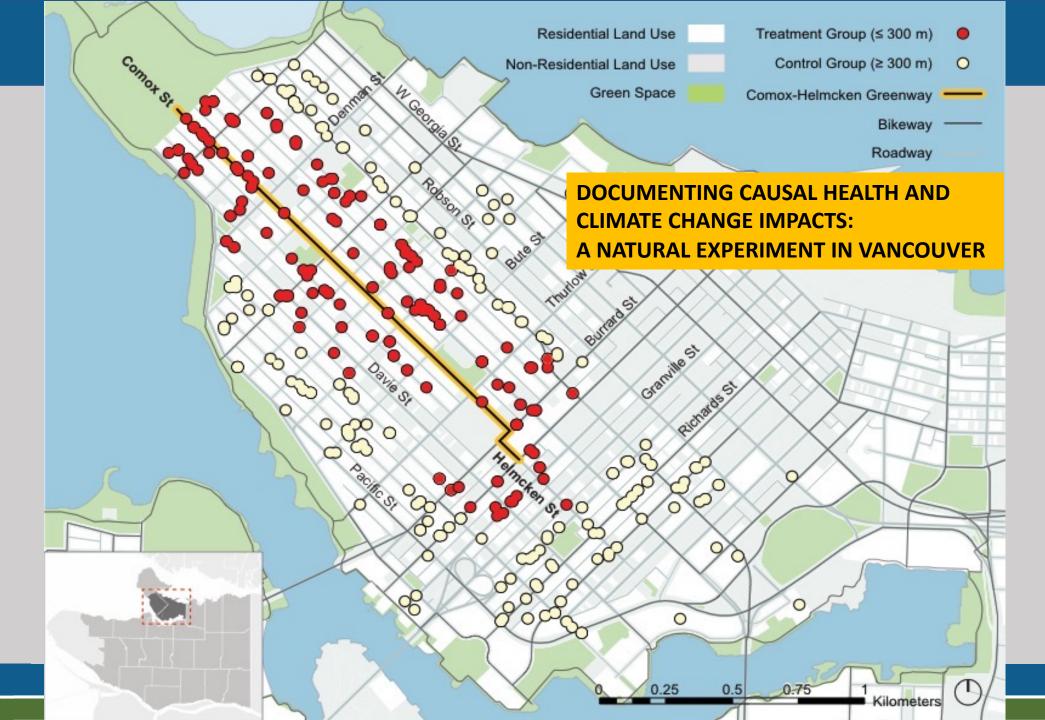
Where Matters

alth & Economic Impacts of Where We Live


People living in a moderately walkable area are 27% less likely to have diabetes and people in a walkable area are 39% less likely to have diabetes compared to those living in a car dependent area.

Frank, L.D., Adhikari, B., White, K.R., Dummer, T., Sandhu, J., Demlow, E., Hu, Y., Hong, A., Van Den Bosch, M. (2022). Chronic Disease and Where You Live: Built and Natural Environment Relationships with Physical Activity, Obesity, And Diabetes. Environment International.

Walkability and Sense of Community



Where Matters

People living in a moderately walkable area are 24% more likely to have a strong sense of community belonging and people in a walkable area are 47% more likely compared to those living in a car dependent area.

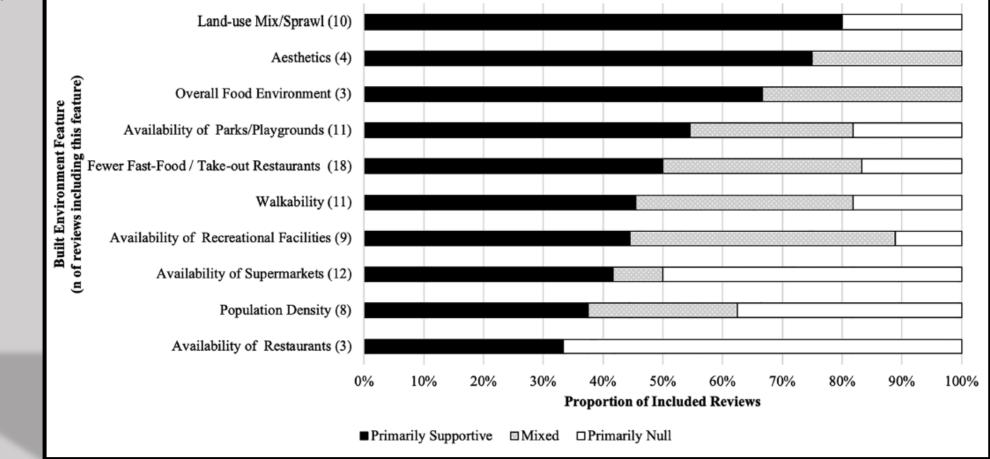
Ud.1

URBAN DESIGN 4 HEALTH

13

After (Counterflow Lanes)

C5-16


Documenting GHG & Health Impacts

- Those within 300 Meters of the greenway reduced their transport GHG emissions by 21%
 - Those further away drove and generated more GHG emissions due to emergence of car sharing
 - <u>Transportation Research Part D</u>: Ngo, Hong, and Frank, 2018
- Those within 300 Meters of the greenway where twice as likely to meet recommended physical activity levels Those further were less likely to meet this target
 - <u>Preventive Medicine</u>: Frank, Ngo, Hong, 2019
- Those within 300 Meters of the greenway showed a 5 fold(251 %) increase in # of reported cycling trips
 - International Journal of Transportation Policy: Frank, Ngo, Hong, 2021

Environment & Obesity: Literature Review

 Dixon BN, Ugwoaba UA, Brockmann AN, Ross KM. Associations between the built environment and dietary intake, physical activity, and obesity: A scoping review of reviews. 2021.

National Public Health Assessment Model (NPHAM)

Purpose:

- Built to address a major gap in uniform health outcome measurement
- Tool to forecast future health conditions of alternative investments

Development:

- Created by Urban Design 4 Health
- Supported by the U.S. Environmental Protection Agency (EPA)

Environmental Indicators:

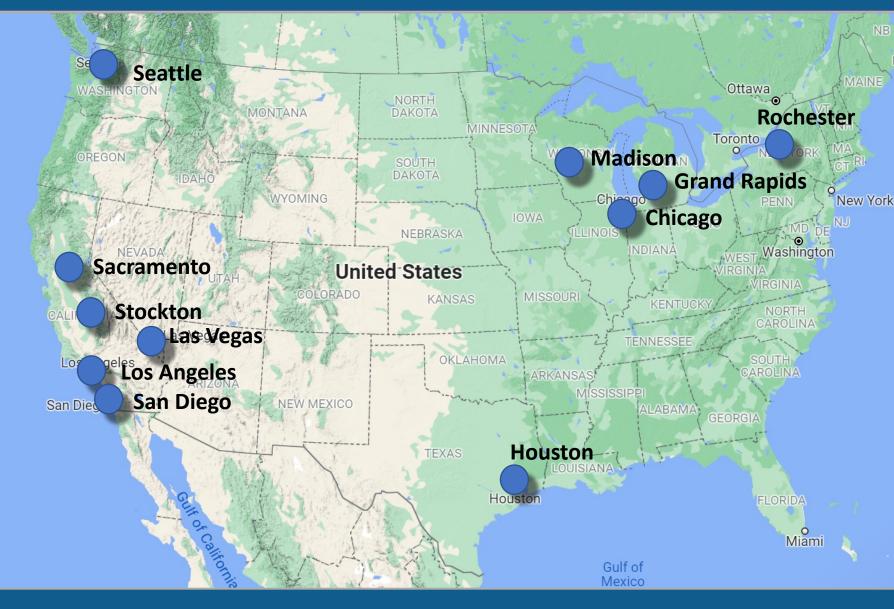
National

Database

(NED)

- National Environmental Database (NED): built, natural & social environmental measures
- Supported by the Robert Wood Johnson Foundation

Measure & optimize health and economic impacts of Regional Plans, TODs & Local Applications



N-PHAM History - Case Study Locations

- 12 applications in 10 different cities
- Long Range Transportation Plans
- Environmental Justice focus
- Scenario planning
- Health & transportation
- Health & freight

N-PHAM Built Environment Data Sources

N-PHAM comes preloaded with:

2020 American Community Survey 5-year Data:

- ≻ Age
- Race/ethnicity
- Income
- ➤ Vehicles
- Family type
- ➤ Employment

2020 National Environmental Data:

- Population and employment density
- Access to jobs, shopping, restaurants
- Parks and greenspace access
- Transit service

Bicycle and pedestrian infrastructure access (USEPA, USGS, OpenStreetMaps)

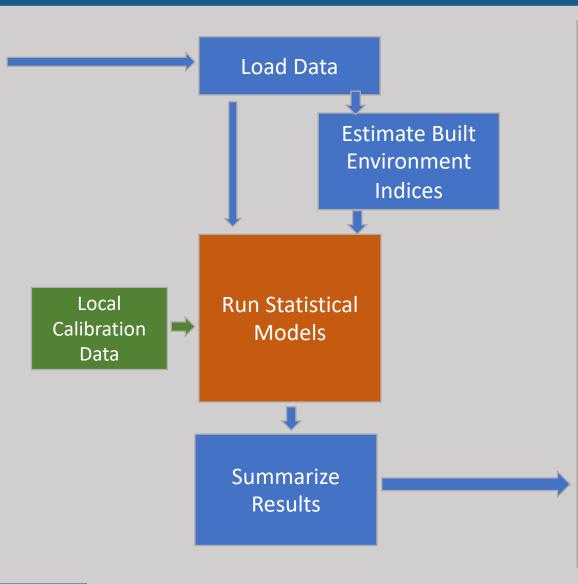
NPHAM Health and Travel Outcome Data Sources

Health Outcomes California Health Interview Survey (CHIS) N = 54,481

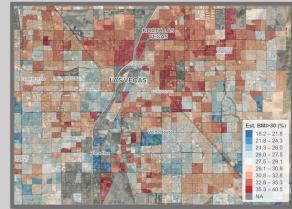
Travel Behavior/Physical Activity National Household Travel Survey (NHTS) N=40,887

N-PHAM Application Process

Geospatial Inputs



35 Social/Cultural Metrics (Demographics - Census)


- > Age
- ➢ Race
- ➤ Income
- Vehicles
- Family type
- Employment

22 Built/Natural Environment Metrics

- > Density
- Accessibility
- Greenspace
- Transit
- Bike/ped

Geospatial Outputs

- Body Mass Index
- Physical Activity
- % Overweight
- % Obese
- > % Type 2 Diabetes
- % Hypertension
- % Coronary heart disease
- Depression
- Annualized cost of illness

N-PHAM: Core Statistical Model Data Development

Health conditions and covariates

Health and activity surveys

Participants Linked With Home Environmental Data

Resulting database of survey participants:

- Health characteristics
- Covariates (age, race, gender, education, etc.)
- Home environment (density, accessibility, transit, greenspace, and bike/ped)
- Other Environments: Work, School, Street Design, Social Cohesion, Sense of Community

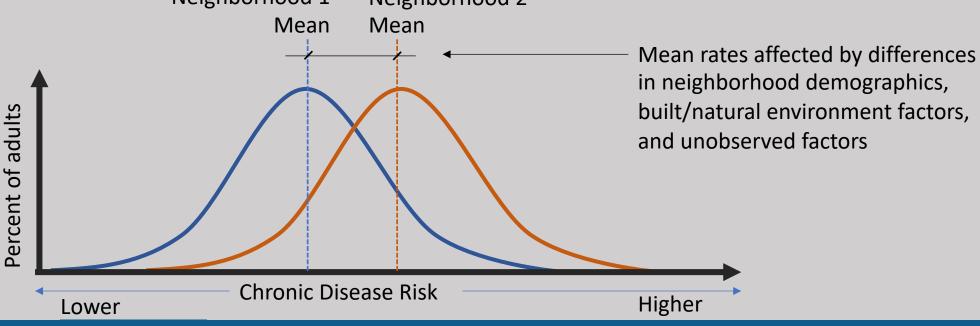
Built and natural environment data

(Density, accessibility, transit, greenspace, bike/ped)

N-PHAM: Mean rates by neighborhood

Walkable communities

- Higher density
- Diverse land use
- Travel mode options
- Shorter trips



Neighborhood 1

Auto-dependent communities

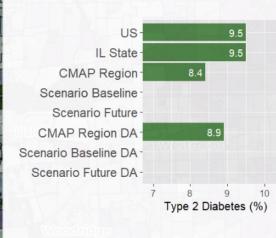
- Lower density
- Low land use variability
- Limited modal options
- Longer trips

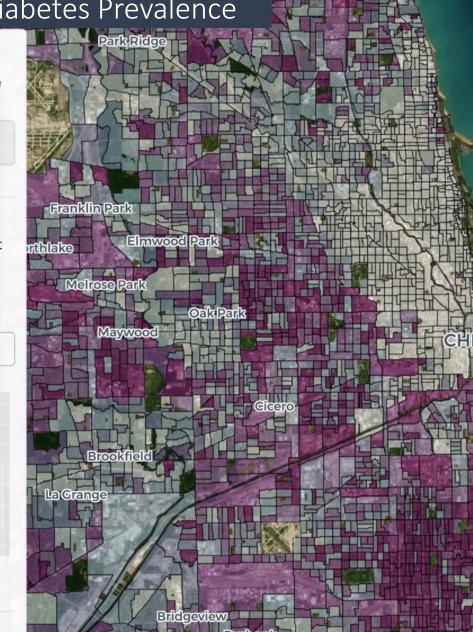
Skoki

Estimated Type 2 Diabetes Prevalence

Scenario: CMAP Region Base

Import UF or NPHAM Scenario CSV file (csv or zip)


Browse... No file selected


Estimated Annual Health Costs (Type 2 Diabetes, Hypertension, Coronary Heart Disease)

CMAP Region: \$12 (billion)

Select Outcome

Type2 Diabetes (%)

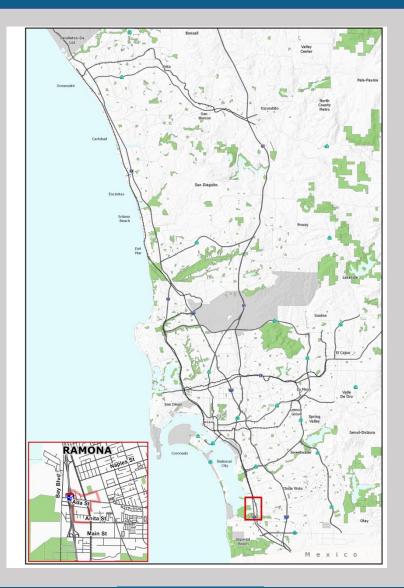
Model Inputs:

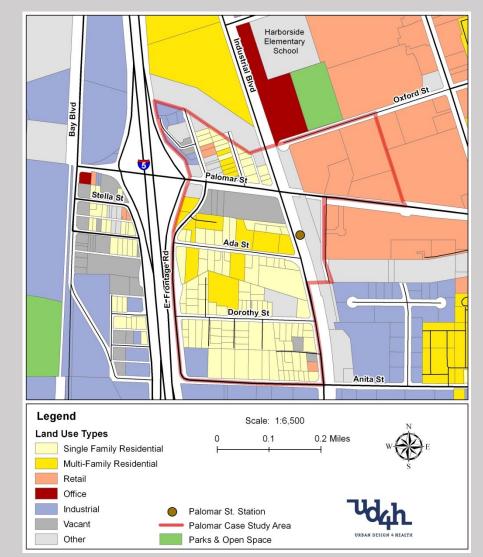
Built/natural Environment

- Density
- Accessibility
- Greenspace
- Transit
- Bike/ped

Demographics:

- > Age
 - Race
 - Income
 - > Vehicles
 - Family type
 - Employment




Model Outputs:

- Body Mass Index overweight, obese
- Type 2 Diabetes
- Hypertension
- Coronary heart disease
- Depression
- Distress
- Covid-19 Risk Index
- Transport –related physical activity
- Annualized cost of illness

Es	t. Type 2 Diabetes (%)
	0.0 - 5.4
	5.4 - 6.8
	6.8 – 7.8
	7.8 – 8.8
	8.8 – 9.8
	9.8 – 11.2
	11.2 – 13.8
	13.8 – 100.0

Case study 1 – Palomar Gateway

PALOMAR GATEWAY RESULTS SUMMARY

All adult health metrics improved

- 68% increase minutes of daily transportation walking
- 15.4% reduction in high blood pressure
- 9.6 % reduction in type II diabetes

Frank, L.D., Fox, E., Ulmer, J., Chapman, J. & Braun, L. (2022). Quantifying The Health Benefits of Transit-Oriented Development: Creation and Application of The San Diego Public Health Assessment Model (SD-PHAM). <u>Journal of Transport Policy</u>.

HEALTH IMPACT RESULTS

– Adults:

- 68% increase in daily minutes of transport walking
- 15% reduction in prevalence of high blood pressure
- 10% reduction in prevalence of type 2 diabetes
- Children/Teens:

UD4H.com

- 29% increase in walking to school
- 18% increase in daily minutes of transport walking
- Predicted increases in asthma

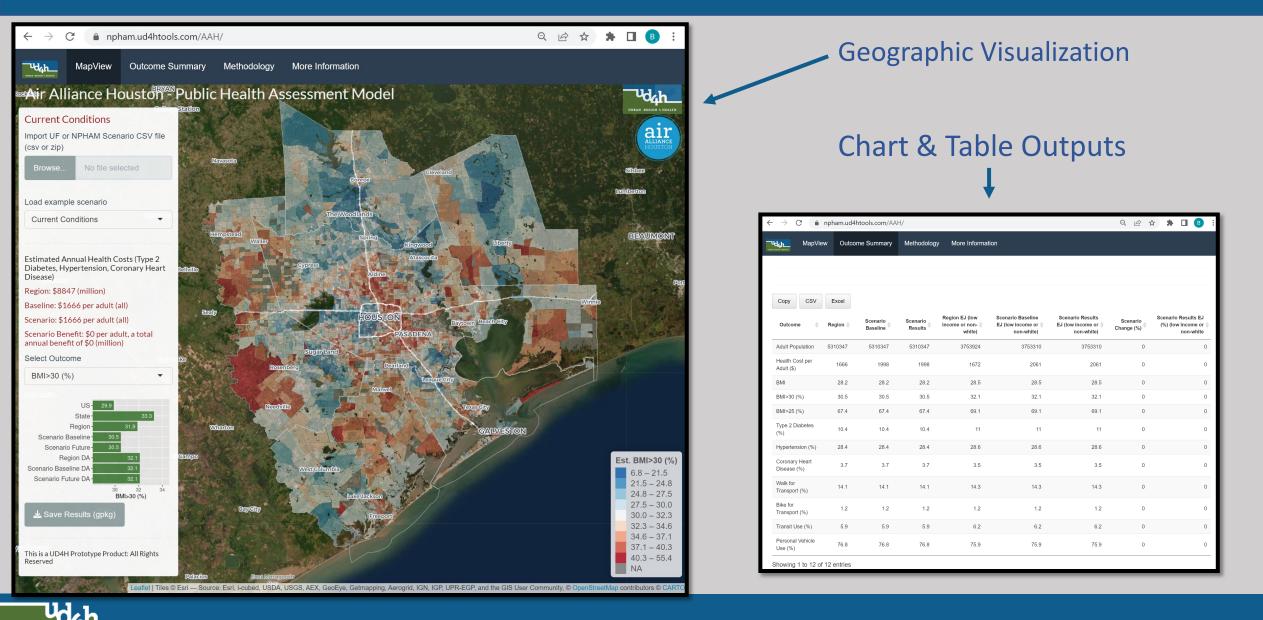
PREDICTED HEALTH IMPACTS							
NEGATIVE		POSIT	IVE				
1-10%	10-12% O	VER 25%	1-10%	10-12%	OVER 25%		
		— CHANGE					
HEALTH INDIC	ATOR	BASE SCENARIO	CHANG	SE SCENARIO	% CHANGE		
TRAVEL-RELAT	ED PHYSICAL AC	TIVITY OUTCOMES	;				
Daily minutes tr walking—adults		6.1	10.24		67.87%		
Daily minutes tr walking—childre		4.39	5.16		17.54%		
Percent walking teens	to school—	43.65	46.06		5.52%		
Percent walking dren	to school—chil-	18.81	24.17		28.50%		
RECREATIONA	L PHYSICAL ACTI	VITY OUTCOMES					
Daily minutes re walking—adults		8.42	8.87		5.34%		
Daily minutes m ational activity-		17.33	18.38		6.06%		
Days per week physical activity		3.87	3.91		1.03%		
BODY WEIGHT OUTCOMES							
Body mass inde	ex—adults	28	27.65		-1.25%		
Body mass inde	ex—children	20.94	20.68		-1.24%		
Body mass inde	ex—teens	23.19	23.05		-0.60%		
CHRONIC DISEASE OUTCOMES							
Percent of adult blood pressure	ts with high	30.92	26.16		-15.39%		
Percent of adult diabetes	ts with Type 2	8.63	7.8		-9.62%		
ASTHMA							
Percent of adult	ts with asthma	5.69	5.43		-4.57%		
Percent of teen	s with asthma	15.43	18.17		17.76%		
Percent of child	lren with asthma	16.66	18.48		10.92%		
OTHER OUTCOMES							
Pedestrian/cycl factor (1-100, lo	ist collision risk wer is better)	46.71	47.65		2.01%		
General health s	status (1–5,	3.21	3.28		2.18%		

higher is better)—adults

Modeling Los Angeles Region-Predictions

Adults: Ages 18- 64	2040 Trend	Adopted Plan	Glendale
Recreation Physical Activity - Minutes Daily	14.6 min	+ .4%	+ 9%
Walking - Minutes Daily	12.1 min	+ 33%	+ 10%
Biking - Minutes Daily	1.6 min	+ 26%	+ 12%
Auto - Minutes Daily	64.8 min	- 4.4%	- 6%
Obese Population (%)	26.3%	- 1.3%	-3%
High Blood Pressure (%)	21.5%	- 1.2%	- 1%
Heart Disease (%)	4.4%	- 1.0%	0%
Diabetes - Type 2 (%)	6.1%	- 1.0%	- 11%

MORE HIGH QUALITY TRANSIT AREAS, GLENDALE (LA COUNTY)



California Public Health & Activity Model -

Scenario Planning for Southern California Association of Governments

H-PHAM baseline model – Updated with local baseline data

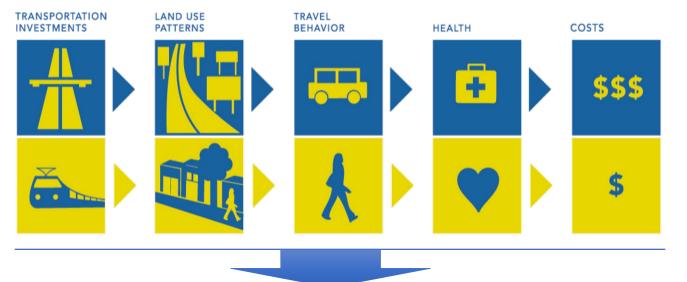
URBAN DESIGN 4 HEALTH

Many Monetized Benefits of Active Travel

- Capital Construction
- Maintenance

- Equipment & Services
- Tourism

- Healthcare
- Less Employee Absenteeism


Health related Economic Impacts of TOD and Transportation Investments

- Evidence suggests transportation investments can have broad-reaching implications for health and economies.
- Health benefits of active transportation & transit investments **receive less attention** in the regional planning process.
- Economic benefits associated with transportation investments, including health-related impacts and productivity gains, are significant

Health Cost/Benefits from Scenarios

Land use and transportation affect community health

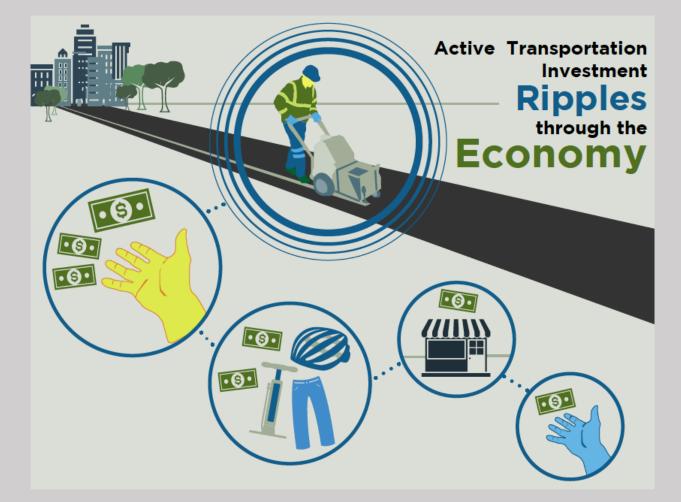
UD4H's suite of Public Health Assessment Models

- UD4H/USEPA supported web-based application
- Estimate changes in chronic disease prevalence and associated cost of health care

US Census Block Group Estimates

- Body Mass Index, overweight, obese
- Type 2 Diabetes
- Hypertension
- Coronary Heart Disease (CHD)
- Depression
- Distress
- Covid-19 Risk Index (CVD Index)
- Walk for Transport
- Bike for Transport
- Transit Use
- Personal Vehicle Use
- Annualized cost of illness

Methods for Health Monetization


Value of Statistical Life

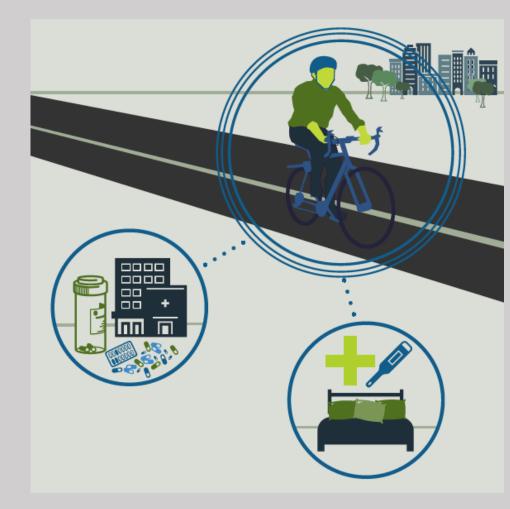
- Applications to avoided mortality
- Tool Example: WHO's Health Economic Assessment Tool

Cost of Illness

- Applications to avoided morbidity
- Tool Examples: Input-Output Modeling
 - REMI TranSight
 - ➢ IMPLAN

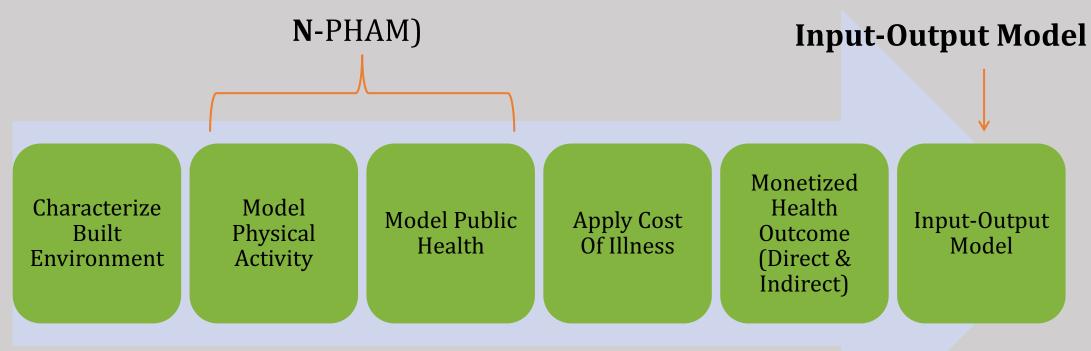
Cost of Illness to Monetize Morbidity

Cost of Illness:


- National "cost" attributable to a disease
- Elevates health as an important active transport co-benefit

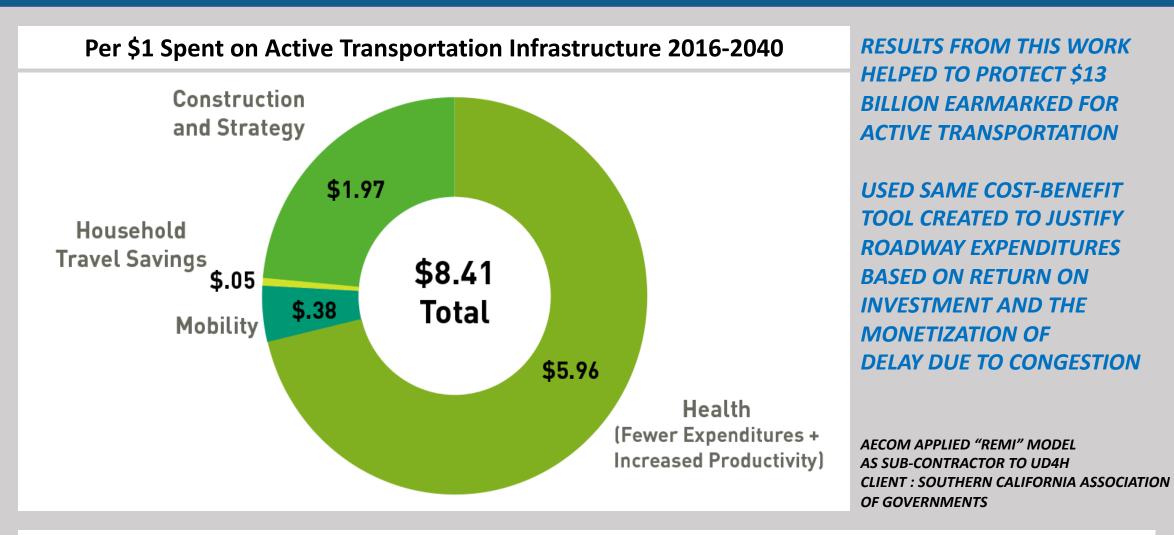
Direct Costs: Healthcare Expenditures

Money exchanged for healthcare (doctor visits & hospitals) and pharmaceuticals


Indirect Costs

- Absenteeism, reduced productivity, early disability
- Reduced productivity for those with more disease:
 - More worked missed | More disability | Increased Mortality

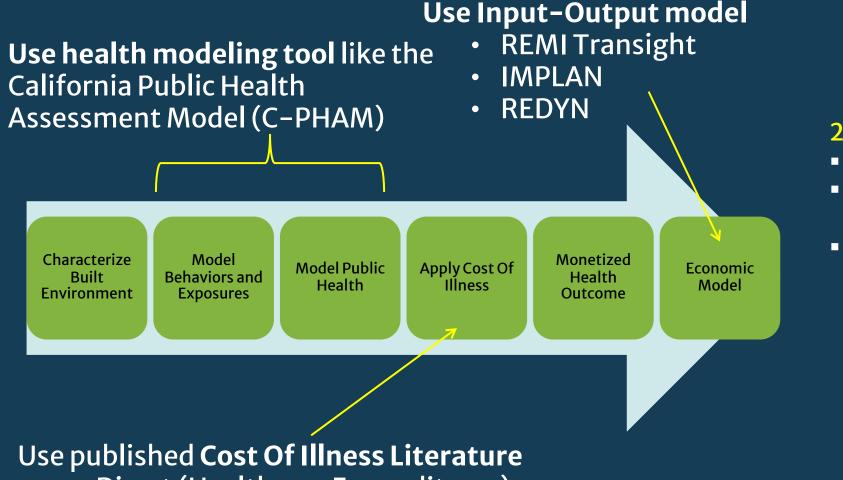
MONETIZING HEALTH OUTCOMES



Use published Cost Of Illness Literature

- Direct (Healthcare Expenditures)
- Indirect (Workforce Productivity)

LOS ANGELES – REGIONAL TRANSPORTATION PLAN UPDATE



\$12.8 Billion Spent Will Generate \$113 Billion Over Life of the Plan

Opportunity to estimate health costs of long range plans

- Direct (Healthcare Expenditures)
- Indirect (Productivity)

2016 Analysis by UD4H/AECOM

- Greater LA Region
- \$8.41 benefit per \$1 invested in active transportation
- From
 - > Labor force productivity
 - Reduced health care costs
 - > Reduced travel expenditure
 - Increased mobility
 - New construction

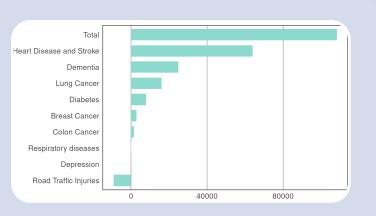

N-PHAM: WebApp Capabilities

Load future scenarios from native NPHAM file or scenario planning software

Displays cost-of-illness for diabetes, hypertension, heart disease)

Thematic mapping of all outcomes

Comparison of selected outcome prevalence rates for US, state, region, baseline, scenario, and EJ areas



Community Health Modeling – Different Approaches

N-PHAM

Approach: Multi-level models

Primary Input: Demographics, Built & Natural Environment

Geography: Fine Grain / Scalable (Parcel, Census Block Group, Tract, Corridor, Regional)

Mediators: Physical activity, BMI Outputs: Chronic disease prevalence, economic impact

CDC PLACES

Approach: Multi-level models Primary Input: Demographics

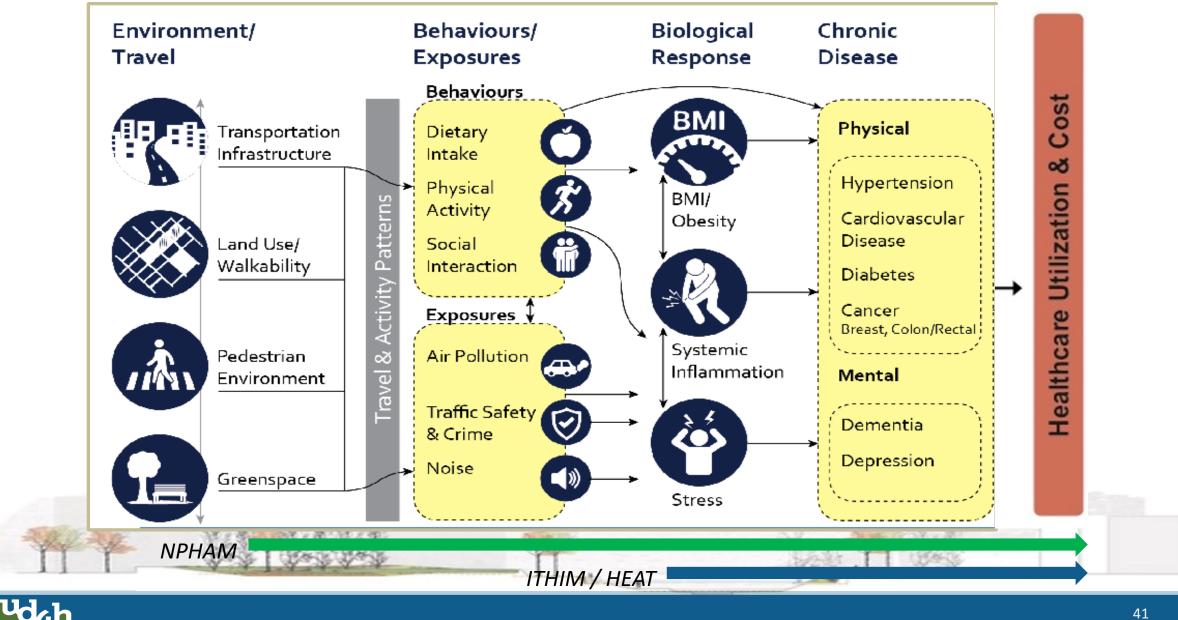
Geography: US Census Tract

Outputs: Existing chronic disease prevalence (no future scenario modeling offered)

Allow A

ITHIM / HEAT

Approach: Use published data relationships on disease burden and / or mortality


Primary Input: Change in physical activity, air pollution, crash rates

Geography: Typically County or Regional Scale

Outputs: Chronic disease prevalence, mortality, economic impact

Predictive Modeling Approaches

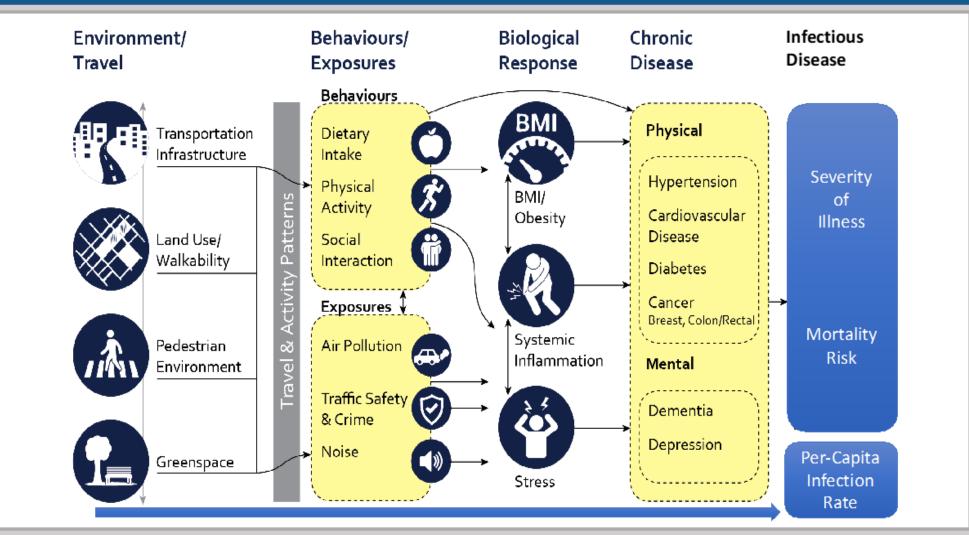
URBAN DESIGN 4 HEALTH

N-PHAM: Case Study Applications in 3 Regions

- Las Vegas Transportation Health Study
 - Partner: Regional Transportation Commission of S. Nevada
 - Metropolitan Las Vegas, NV
- Genesee-Finger Lakes Public Health Assessment Model
 - Partner: Genesee Transportation Commission
 - Metropolitan Rochester, NY
- South Stockton Promise Zone
 - Partner: San Joaquin Council of Governments
 - Metropolitan Stockton, CA

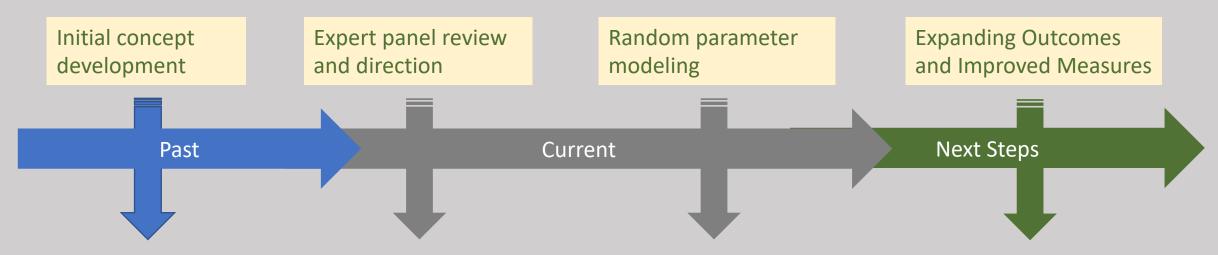


Urban Design 4 Health



Thank you

Lawrence Frank, PhD, President – Idfrank@ud4h.com


Causal Pathway

Frank, L. D., Iroz-Elardo, N., MacLeod, K. E., Hong, A. (2019). The pathways from built environment to health: Connecting behavior and exposure-based impacts. Journal of Transport and Health. Vol 12. March 2019. Pages 319-335

N-PHAM: Past, Current, and Next Steps

First generation

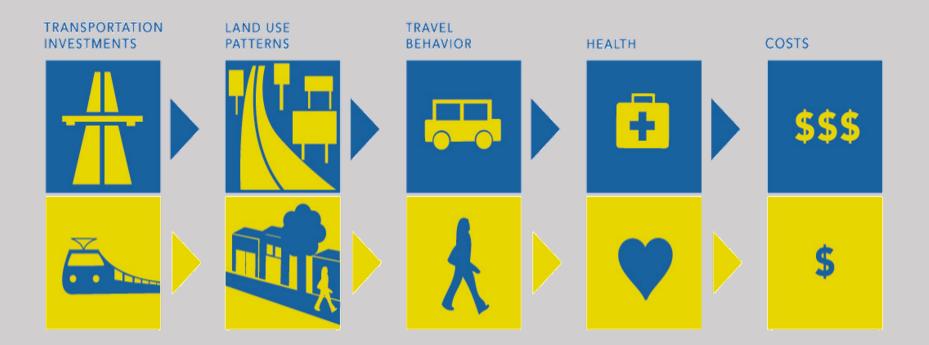
- Los Angeles, Houston, San Joaquin
- API / Envision Tomorrow
- Peer reviewed & Published

Second generation

- Fixed Parameter Models
- Cost of Illness
- Las Vegas, Rochester, Houston Chicago
- EnviroAtlas Coordination
- Basic WebApp development
- Scenario Platform Integration

Third generation

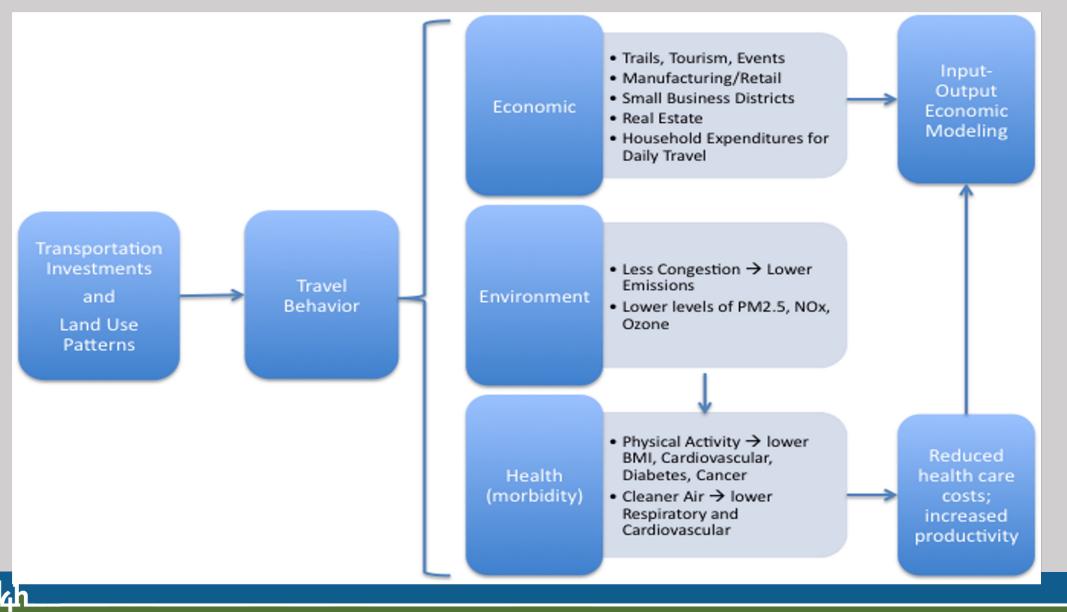
- Random Parameter Models
- More use cases
- USEPA peer review
- API / EnviroAtlas integration
- Improved WebApp
- Publications


Fourth generation

- Air Pollution Exposure
- Full Monetization
- Pedestrian
 Environment
- Additional Outcomes
 - COVID-19
 - Cancer
 - Injury Risk / Safety

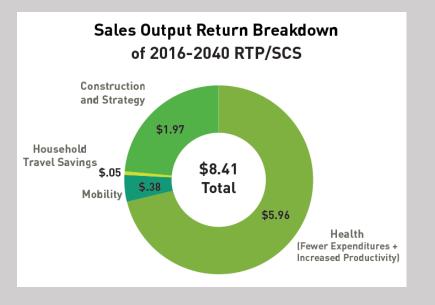
Approach: Decision-Making Evidence & Tools

HOW TRANSPORTATION IMPACTS HEALTH COSTS

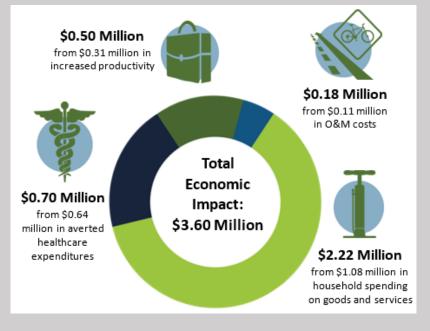


Source: "The Hidden Health Costs of Transportation" APHA. Written by UD4H, Inc. 2010.

CONCEPTUAL MODEL – TYPES OF MONETIZED IMPACTS


GENESIS OF TOOL DEVELOPMENT

- 2005: INDEX: Livable Community Initiative: Atlanta (SMARTRAQ)
- 2007: I-PLACE3S: King County, added health module
- 2011: UrbanFootprint: Vision California
- 2012: CommunityViz: San Diego, & Toronto, Ontario & Surrey, BC—added health module
- 2015: California Public Health Assessment Module (CPHAM) for Urban Footprint 2.0
- 2016-present: National Public Health Assessment Model (NPHAM)



Health & Economic Impact

Health Monetization of Active Transportation (Southern CA)

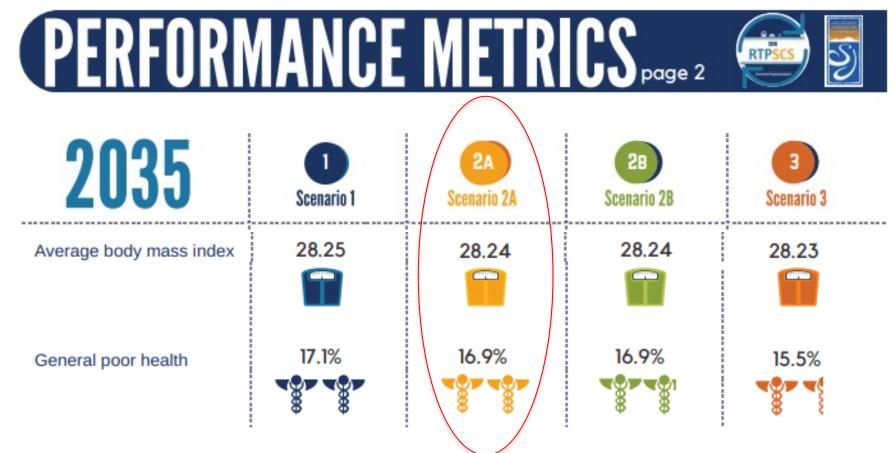
Utah Active Transportation Study

INTEGRATING HEALTH INTO SCENARIO PLANNING FOR TRANSPORTATION & LAND USE APPLICATIONS

THE RIGHT WAY TO DO TRANSPORTATION COST/BENEFIT ANALYSIS WEBINAR December 15, 2022

Kim Anderson Deputy Director for Planning San Joaquin Council of Governments

CASE STUDY APPLICATION: SOUTH STOCKTON PROMISE ZONE


HEALTH EQUITY STUDY

- Integrating Health Into Regional Transportation Planning
 - San Joaquin Council of Governments (SJCOG) is a metropolitan planning organization and responsible for regional transportation plans and programming of local, state, federal funds
 - Required to address environmental justice (EJ) in Regional Transportation Plans (RTPs)
 - More Intentional Focus on Health and Active Transportation

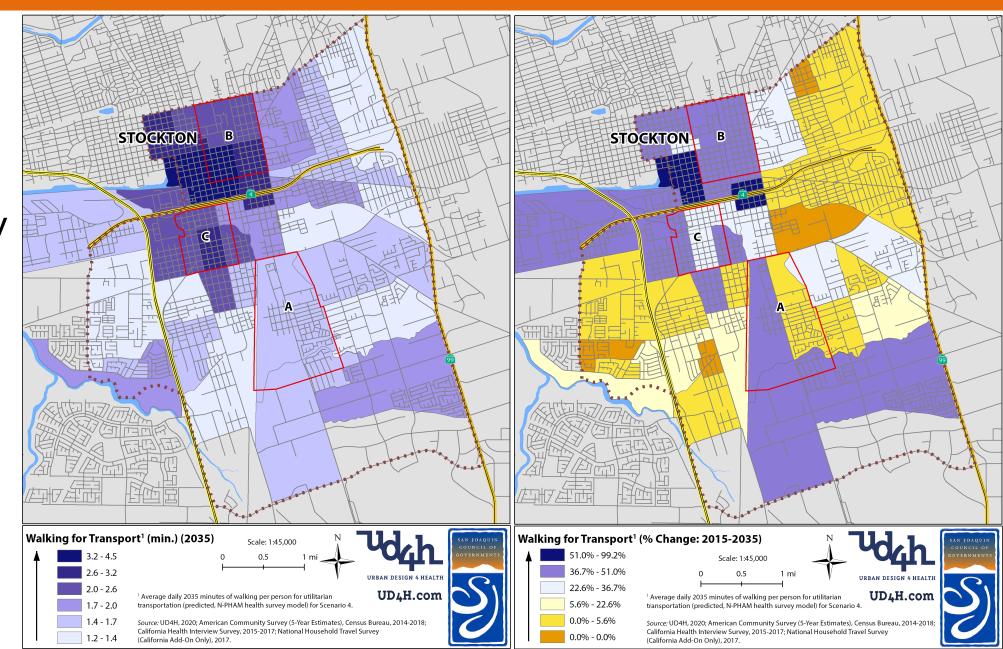
HEALTH EQUITY STUDY

2018 Regional Transportation Plan & Sustainable Communities Strategy

HEALTH EQUITY STUDY

South Stockton Promise Zone

- For the region, the neighborhoods in the SSPZ represent the most disadvantaged communities
 - Compared to the overall City population, SSPZ residents are more likely to experience poverty, be burdened by housing costs
 - There is also a higher concentration of communities of color in the SSPZ
 - Residents are more likely to come from a limited English-speaking household



2035 FORECASTED CHANGES IN UTILITARIAN WALKING

Most Change

- Downtown
 Core
- Airport Way Corridor

BAN DESIGN 4 HEAD

2035 FORECASTED CHANGES IN PA

Utilitarian & Leisure Physical Activity

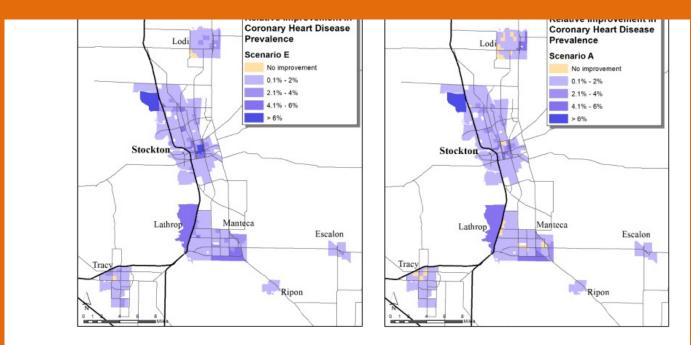
Physical Activity	Baseline (2015)	Baseline (2015) Adopted Scenario (2035)			Bold Scenario (2035)		
	Weighted Mean (Weighted SD)		Absolute Change	Percent Change	Weighted Mean (Weighted SD)	Absolute Change	Percent Change
	Baseline	Future			Future		
Walking for transport (daily minutes)	1.56 (0.36)	1.76 (0.53)	+0.20	+12.8%	1.94 (0.71)	+0.38	+24.4%
Walking for transport (participation)	17.0% (6.6%)	20.8% (9.2%)	+3.8%	+22.4%	22.9% (11.1%)	+5.9%	+34.9%
Walking for leisure (weekly minutes)	13.42 (0.74)	13.67 (0.78)	+0.25	+1.9%	13.94 (1.05)	+0.51	+3.8%
Walking for leisure (participation)	57.8% (1.1%)	58.2% (1.2%)	+0.4%	+0.7%	58.5% (1.5%)	+0.7%	+1.2%
Bicycling for transport (daily minutes)	1.04 (0.03)	1.05 (0.04)	+0.01	+1.0%	1.06 (0.05)	+0.03	+2.6%
Bicycling for transport (participation)	0.9% (0.4%)	1.2% (0.6%)	+0.3%	+33.3%	1.4% (0.7%)	+0.4%	+45.2%

Source: Iroz-Elardo, N., Schoner, J., Fox, E., Brookes, A. & Frank, L. (2020). Active Travel & Social Justice: Addressing Disparities & Promoting Health Equity through a Novel Approach to Regional Transportation Planning. Social Science & Medicine, 261. DOI: 10.1016/j.socscimed.2020.113211

2035 FORECASTED CHANGES IN HEALTH OUTCOMES

Chronic & Cardiovascular Disease

Health Outcome	Baseline (2015) Adopted Scenario (2035)			Bold Scenario (2035)			
	Weighted Mean (Weighted SD)		Absolute Change	Percent Change	Weighted Mean (Weighted SD)	Absolute Change	Percent Change
	Baseline	Future			Future		
% Obesity (>30 BMI)	36.0% (3.2%)	34.5% (3.6%)	-1.5%	-4.2%	33.6% (4.1%)	-2.4%	-6.5%
% Overweight or obese status	70.9% (3.1%)	69.4% (3.8%)	-1.5%	-2.1%	68.5% (4.4%)	-2.4%	-3.3%
(>25 BMI)							
% Coronary heart disease	4.2% (0.8%)	4.0% (0.7%)	-0.2%	-4.8%	4.0% (0.8%)	-0.2%	-5.4%
% High blood pressure	29.7% (4.3%)	28.4% (4.1%)	-1.3%	-4.4%	27.6% (4.4%)	-2.1%	-7.0%
% Type 2 diabetes	11.1% (3.1%)	10.4% (2.8%)	-0.7%	-6.3%	10.1% (2.8%)	-1.0%	-9.4%


Mental & General Health Status

Health Outcome	Baseline (2015)	ed Scenario (2035)		Bold Scenario (2035)			
	Weighted Mean (Weighted SD)		Absolute Change	Percent Change	Weighted Mean (Weighted SD)	Absolute Change	Percent Change
	Baseline	Future			Future		
% Fair or poor general health	30.3% (4.9%)	29.8% (4.7%)	-0.5%	-1.7%	29.6% (4.6%)	-0.7%	-2.4%
% Depression	32.8% (2.8%)	32.4% (2.7%)	-0.4%	-1.2%	32.2% (2.7%)	-0.6%	-1.9%
% Psychological distress	6.1% (0.8%)	5.9% (0.7%)	-0.2%	-3.3%	5.8% (0.7%)	-0.4%	-6.2%

Source: Iroz-Elardo, N., Schoner, J., Fox, E., Brookes, A. & Frank, L. (2020). <u>Active Travel & Social Justice: Addressing Disparities & Promoting Health Equity through a Novel Approach</u> to Regional Transportation Planning. *Social Science & Medicine, 261*. DOI: <u>10.1016/j.socscimed.2020.113211</u>

2022 RTP/SCS

TCAC Opportunity Area	Baseline	Scenario A	Scenario E
High Segregation & Poverty	2.6%	2.6%	2.6%
Low Resource	2.8%	2.6%	2.6%
Moderate Resource	2.9%	3.0%	2.9%
High Resource	2.9%	2.8%	2.8%
Highest Resource	3.0%	2.9%	3.0%
Total	2.9%	2.8%	2.8%
Absolute difference from baseline		-0.09%	-0.09%
Relative difference from baseline		-3.02%	-3.18%

FIGURE 34: TOTAL SJCOG REGION'S POPULATION-WEIGHTED AVERAGE FOR CORONARY HEART DISEASE PREVALENCE FOR EACH SCENARIO BY OPPORTUNITY AREA CLASSIFICATION

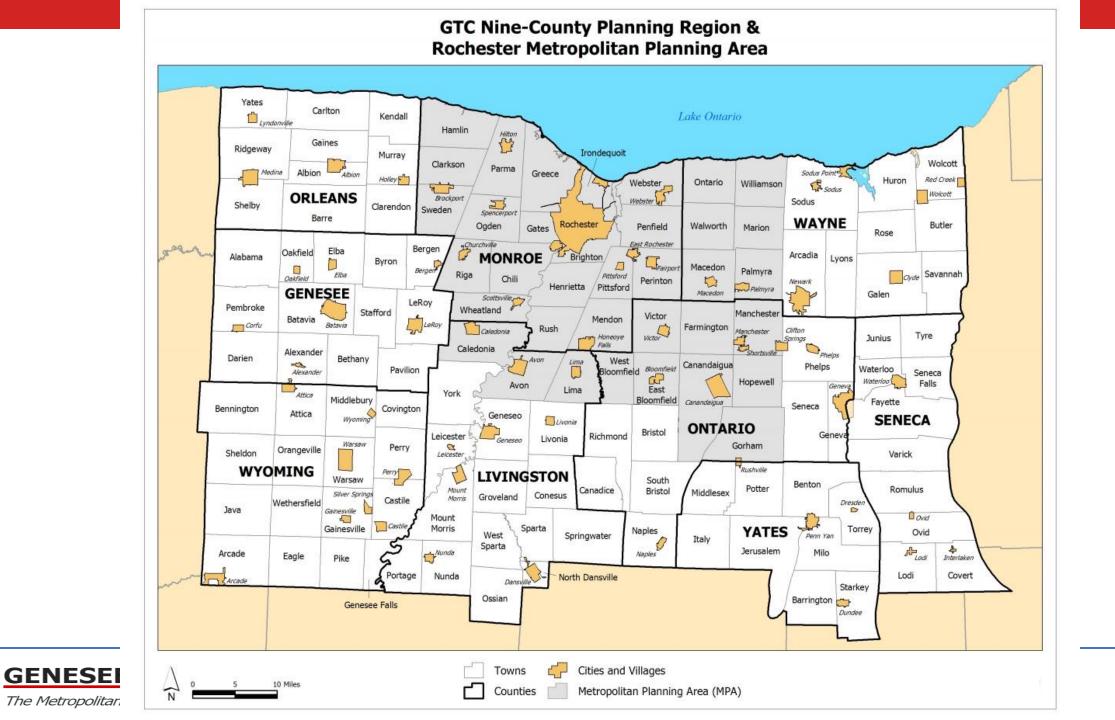
OUTCOMES & NEXT STEPS

- Jurisdictions initiated neighborhood level assessments for project development
- Sustainable Transportation Equity Program (STEP) Stockton Mobility Collective
- Consideration of health metric use for active transportation scoring
- Consideration of health metric use for Regional Early Action Program (REAP) planning and implementation grants

THANK YOU

Kim Anderson

Deputy Director for Planning SJCOG anderson@sjcog.org



GENESEE TRANSPORTATION COUNCIL

The Metropolitan Planning Organization for the Genesee-Finger Lakes Region

Scenario Planning for Regional Regeneration

America Walks December 15, 2022

Regeneration for Small Growth Region

Challenges

- Slow population growth
- Change in employment
- Job sprawl
- Persistent poverty and environmental justice

Opportunities

- Strong urban and regional cores
- Growth in multiple industries
- Investment in transit and active transportation
- Partnership across public, private, and civic sectors

GENESEE TRANSPORTATION COUNCIL

Need for Scenario Planning

- 1. Broaden the conversation about long-range issues and plans
 - Change the conversation from regional decline to future opportunities
 - Reach more audiences through visualizations and public involvement
 - Facilitate bringing multiple jurisdictions to the table
- 2. Provide technical resources to enable planning
 - MPO financial support and leadership for developing a scenario planning platform
 - Let local partners lead initiatives

GENESEE TRANSPORTATION COUNCIL

Need for Scenario Planning

- 3. Foster collaboration among existing <u>and new</u> partners
 - Lay foundation for multi-jurisdictional land use plans, polices, and agreements
 - Create opportunities for new interdisciplinary studies and plans
- 4. Preparation for future issues and regulations
 - New York State Climate Leadership and Community Protection Act
 - County Housing and Farm Protection plans
 - Integrate health impacts as a key performance measure

GENESEE TRANSPORTATION COUNCIL

Land Consumption

URBAN

 Measure impacts on natural and agricultural lands by land developed/redeveloped

Energy and Water

 Electricity/natural gas and water use for residential and commercial buildings based on building type and climate zone.

Transportation

- Assess and map vehicle miles traveled, fuel use, and emissions for current and future scenarios.
- Transit and walking accessibility Measure and map walk access to transit stops, parks and schools, services, and other key amenities.

1

07

....

Emissions

• Carbon and pollutant emissions associated with energy use, water use, and transportation.

Fiscal Impacts

- Analyze annual household expenses associated with energy, water, and transportation use.
- Public sector costs relating to infrastructure maintenance and providing services

 \bigcirc

<u>Genesee-Finger Lakes Health Assessment</u> <u>Module</u>

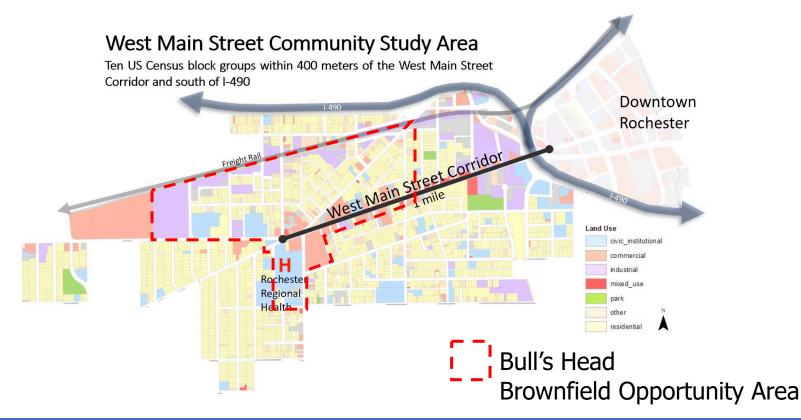
- Based upon National Public Health Assessment Module
- Post-processing of UrbanFootprint scenarios

Health Impact

- Project rates of physical activity and changes in chronic disease rates.
- Responsive to changes in built environment types and air emissions.

GENESEE TRANSPORTATION COUNCIL

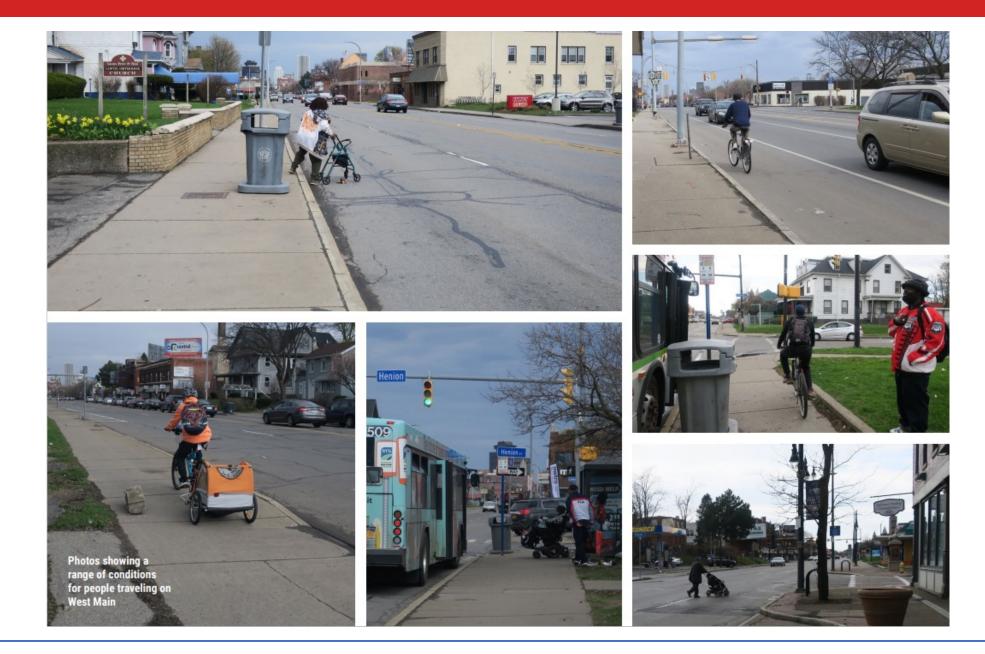
Case Study: West Main Street & Bull's Head


The **Genesee-Finger Lakes Public Health Assessment Module** (GFL-PHAM) was used to evaluate existing community health and physical activity conditions in the W. Main Street and Bulls Head Brownfield Opportunity Area.

GENESEE TRANSPORTATION COUNCIL

Case Study: West Main Street & Bull's Head

The **Genesee-Finger Lakes Public Health Assessment Module** (GFL-PHAM) was used to evaluate existing community health and physical activity conditions in the W. Main Street and Bulls Head Brownfield Opportunity Area.


GENESEE TRANSPORTATION COUNCIL

Existing Conditions – West Main Street

Figure 10. Existing Allocation of Space on West Main

GENESEE TRANSPORTATION COUNCIL

GENESEE TRANSPORTATION COUNCIL

Genesee-Finger Lakes Scenario Tool

Case Study: West Main Street & Bull's Head

Existing Conditions

Outcome	Monroe County	City of Rochester	West Main Street
BMI>25 (%)	61.2	65.5	71.8
Type 2 Diabetes (%)	9.4	13.1	20.9
Hypertension (%)	26.7	26.4	30.6
Coronary Heart Disease (%)	5.3	4.3	4.4
Depression (%)	19.4	25.5	28.8
Distress (%)	3.9	5.6	6.4
Walk for Transport (%)	19.1	26.6	28.8
Bike for Transport (%)	1.5	2	2
Transit Use (%)	9.4	18.2	26.5

Greenspace Index

GENESEE TRANSPORTATION COUNCIL

West Main Street Multi-Modal Transporation and Placemaking Plan

GENESEE TRANSPORTATION COUNCIL

Bull's Head Redevelopment Vision Plan

GENESEE TRANSPORTATION COUNCIL

Genesee-Finger Lakes Scenario Tool

Case Study: West Main Street & Bull's Head

Scenario Analysis

Increase Bull's Head to match Monroe County averages:

Metric	Existing	Scenario
Accessible Park Area	0.5 acres	5.0 acres
Tree Canopy	17%	27%

- > 5% reduction in obesity prevalence
- > 2% reduction in coronary heart disease prevalence
- > 3% reduction in high blood pressure prevalence
- > 7% reduction in type 2 diabetes

GENESEE TRANSPORTATION COUNCIL

Future Directions

- 1. Training for both staff and other stakeholders
- 2. Support (financial and technical) for more local planning initiatives
 - Integrate with air
- 3. Use N-PHAM for 2050 Long-Range Transportation Plan
- 4. Get the word out !!!

For more information

Alex Kone Assistant Director, GTC akone@gtcmpo.org (585) 232-6240

GENESEE TRANSPORTATION COUNCIL

The Metropolitan Planning Organization for the Genesee-Finger Lakes Region

Genesee-Finger Lakes Scenario Tool